Modulating the development of renal tubules growing in serum-free culture medium at an artificial interstitium.

نویسندگان

  • Sabine Heber
  • Lucia Denk
  • Kanghong Hu
  • Will W Minuth
چکیده

Little information on the structural growth of renal tubules is available. A major problem is the technical limitation of culturing intact differentiated tubules over prolonged periods of time. Consequently, we developed an advanced culture method to follow tubule development. Isolated tissue containing renal progenitor cells was placed in a perfusion culture container at the interphase of an artificial polyester interstitium. Iscove's modified Dulbecco's medium without serum or protein supplementation was used for culture, and the culture period was 13 days. Tissue growth was not supported by addition of extracellular matrix proteins. The development of tubules was registered on cryosections labeled with soybean agglutinin (SBA) and tissue-specific antibodies. Multiple SBA-labeled tubules were found when aldosterone was added to the culture medium. In contrast, culture without aldosterone supplementation displayed completely disintegrated tissue. The development of tubules depended on the applied aldosterone concentration. The use of 1 x 10(-6) M and 1 x 10(-7) M aldosterone produced numerous tubules, while application of 1 x 10(-8) M to 1 x 10(-10) M led to a continuous decrease and finally a loss of tubule formation. The development of labeled tubules in aldosterone-treated specimens took an unexpectedly long period of at least 8 days. The morphogenic effect of aldosterone appeared to be mineralocorticoid hormone-specific since spironolactone and canrenoate abolished the development. Finally, dexamethasone induced widely distributed cell clusters instead of tubules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of polyester interstitium and aldosterone during structural development of renal tubules in serum-free medium.

Little knowledge is available regarding the development of renal stem/progenitor cells into functional parenchyme. To investigate the environmental mechanisms during this maturation process, we elaborated an advanced culture technique to follow renal tubule development. Embryonic stem/progenitor cells derived from neonatal rabbit kidney were placed in a perfusion culture container at the interp...

متن کامل

Generation of renal tubules at the interface of an artificial interstitium.

During kidney development a multitude of tubular portions is formed. Little knowledge is available by which cellbiological mechanism a cluster of embryonic cells is able to generate the three-dimensional structure of a tubule. However, this know-how is most important in tissue engineering approaches such as the generation of an artificial kidney module or for the therapy of renal diseases using...

متن کامل

Growth of embryonic renal parenchyme at the interphase of a polyester artificial interstitium.

The construction of an artificial kidney module by tissue engineering or the application of cell-based therapies for the treatment of renal failure requires exact information regarding the cellbiological mechanisms of parenchyme development in combination with different kinds of biomaterials. To learn more about these processes tissue cultures are frequently used experimental tools. However, ap...

متن کامل

Chemically defined medium environment for the development of renal stem cells into tubules.

The use of stem cells is a valuable therapeutical option for the regeneration of diseased tissues and organs. However, the involved cellular processes are hardly known. To gain detailed information about their development, a new culture technology was developed. Embryonic renal tissue containing stem/progenitor cells was mounted within a perfusion culture container at the interface of an artifi...

متن کامل

Detection of Abnormal Extracellular Matrix in the Interstitium of Regenerating Renal Tubules

Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progeni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2007